【摘要】为了解决传统算法中人工提取特征的缺陷,提出了基于卷积神经网络的玉米品种识别算法。以登海518、浚单20和郑单958 3个玉米品种为研究对象,制作数据集并进行分类标签,分别标记为0、1、2。使用Keras学习框架搭建网络模型,包括1个输入层、5个连续的卷积池化结构、3个全连接层和1个输出层。卷积层提取有效的特征信息,结合Leaky ReLU激活函数传递至下一层,输出层采用Softmax函数实现玉米品种的识别。使用完成训练的模型对预测集进行预测。结果表明:登海518、浚单20、郑单958的识别率分别达到100.00%、93.99%、92.49%,平均识别率达到95.49%。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《铁道运营技术》 2015-06-25
《重庆高教研究》 2015-06-30
《重庆高教研究》 2015-06-25
《重庆电子工程职业学院学报》 2015-07-02
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点