中教数据库 > 江苏农业学报 > 文章详情

基于卷积神经网络的玉米品种识别

更新时间:2023-05-28

【摘要】为了解决传统算法中人工提取特征的缺陷,提出了基于卷积神经网络的玉米品种识别算法。以登海518、浚单20和郑单958 3个玉米品种为研究对象,制作数据集并进行分类标签,分别标记为0、1、2。使用Keras学习框架搭建网络模型,包括1个输入层、5个连续的卷积池化结构、3个全连接层和1个输出层。卷积层提取有效的特征信息,结合Leaky ReLU激活函数传递至下一层,输出层采用Softmax函数实现玉米品种的识别。使用完成训练的模型对预测集进行预测。结果表明:登海518、浚单20、郑单958的识别率分别达到100.00%、93.99%、92.49%,平均识别率达到95.49%。

【关键词】

2794 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号